

Brent Z. Wang

State University of New York at Stony Brook

(for the DØ Collaboration)

APS April Meeting

April 20 - April 23, 2002

Albuquerque, NM

Outline:

- The mSUGRA Model
- Upgraded Tevatron & DØ Detector for Run 2
- Signal and Backgrounds MC Studies
- Preliminary Data on Electron Detection
- Summary

The Minimal Super Gravity Model

- The mSUGRA model is completely defined by only five free parameters: m_0 , $m_{1/2}$, $tan(\beta)$, A_0 , $sign(\mu)$
- Assuming R-parity conservation → pair production + LSP which escapes detection.

VERY CLEAN!

Experimental Signals:

Isolated Trilepton with missing E_T Isolated Like-Sign Dilepton with missing E_T

Inclusive Like Sign Dilepton

Run1 Search Status & Run2 Expectation

Tevatron upgrade:

•Increased energy: $1.8 \text{ TeV} \rightarrow 1.96 \text{ TeV}$

•Expected Lum.: $0.1 \text{ fb}^{-1} \rightarrow 2 \text{ fb}^{-1} \rightarrow 15 \text{ fb}^{-1}$

(Run1) (Run2a) (Run2b)

DØ Detector Upgrade for Run 2:

•Inner tracking system (Silicon and Fiber Tracker)

with 2T inner magnetic field(Charge measurement!)

- •Upgraded muon system (new end cap detectors)
- •Pre-shower detector

Brent Wang

APS April Meeting, 2002

Signal and Backgrounds

One representative set of mSUGRA parameters:

($m_0, m_{1/2}, tan(\beta), A_0, sign(\mu)$) = (100, 180, 5, 0, positive)

MC events simulated: 5000 (select events with N(e) > 1):

Major backgrounds: $W^{\pm}Z^{0}/W^{+}W^{-}/Z^{0}Z^{0}$, Drell-Yan, t t, b b /c c, and W+Jets

Signal and Backgrounds(cont')

Two final state samples are selected:

Like-Sign Di-electron sample:

2 isolated electrons, $P_T(e_1)>15 GeV$, $P_T(e_2)>10 GeV$, missing $E_T>15 GeV$. The 2 electrons both match with isolated tracks, require $0.5 < E_T/P_T < 2.0$ and are like sign. $|M_{ee}-M_Z|<15 GeV$

Tri-electron sample:

3 isolated electrons, $P_T(e_1)>15 GeV$, $P_T(e_2)>10 GeV$ and $P_T(e_3)>5 GeV$. All the electrons match with isolated tracks and require $0.5 < E_T/P_T < 2.0$. $|M_{ee}-M_Z|<15 GeV$

Acceptance (Geometry + Kinematic + Reconstruction) for Signals are:

Tri-electron: 10 %

Like-Sign Di-electron: 6 %

> 50% enhancement in signal acceptance!

Process	Number of MC	Accpt(eee)	Accpt(LS ee)
WZ	125,000	1.6e-4	7.2e-4
Drell-Yan	50,500	1.98e-5	<1.98e-5
ttbar	440,000	<2.3e-6	<2.3e-6
W+Jets	284,500	<3.5e-6	<3.5e-6

All the backgrounds are strongly suppressed!

Run 2 DØ Detector Performance

e1	e2	e3	
$E_{T} = 17.9 \text{ GeV}$	$E_{T} = 13.9 \text{ GeV}$	$E_T = 13.2 \text{ GeV}$	
$p_{T} = 0.52 \text{ GeV}$	$p_{T} = 10.9 \text{ GeV}$	$p_T = 15.1 \text{ GeV}$	
$\eta = 0.43$	$\eta = -1.94$	$\eta = 1.06$	
$\phi = 5.42$	$\phi = 2.80$	$\phi = 5.72$	
Charge = +1	Charge = +1	Charge = -1	
$m_{e1e2} = 55.7$	$m_{e1e3} = 10.8$	$m_{e2e3} = 63.5$	
$m_{e1e2e3} = 85.2 \text{ GeV/c}^2$ $ME_T = 10.7 \text{ GeV}$			

Like-Sign Di-Electron Event

e1	e2		
$E_T = 23.2 \text{ GeV}$	$E_T = 16.2 \text{ GeV}$		
$\eta = -0.81 \ \phi = 6.14$	$\eta = 0.76 \ \phi = 2.84$		
$f_{ISO} = 0.046, f_{EM} = 0.96$	$f_{ISO} = 0.027, f_{EM} = 0.99$		
Global Track 1	Global Track 2		
$P_T = 6.89 \text{ GeV}$	$P_{\rm T}$ = 5.23 GeV		
$\eta = -0.77 \ \phi = 6.15$	$\eta = 0.71 \ \phi = 2.80$		
charge= +1	charge=+1		

 $M(ee)=51.3GeV, mE_T=2.48GeV$

Summary

- Upgraded DØ detector for Run 2 physics program is ready.
- Tri-Electron and Like Sign Di-Electron final states provide one of the cleanest experimental signature of the mSUGRA model. With 2T magnetic field and the precision inner tracker, DØ can detect the Like Sign Di-Electron events, which significantly enhances the SUSY signal acceptance by more than 50% while the backgrounds are strongly suppressed.
- It will be a very exciting future, with 20 times increase in integrated luminosity, DØ experiment is capable to explore much more parameter space in the mSUGRA model than in Run 1.